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Abstract— Microarray technology is a process that allows thousands of genes simultaneously monitor to various experimental conditions. 

It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins, This method is used to 

analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a 

useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we analysed K-Means 

with Automatic Generations of Merge Factor for ISODATA- AGMFI, to group the microarray data sets on the basic of ISODATA. AGMFI is 

to generate initial values for merge and Spilt factor, maximum merge times instead of selecting effic ient values as in ISODATA. The initial 

seeds for each cluster were normally chosen either sequentially or randomly. The quality of the final clusters was found to be influenced by 

these initial seeds. For the real life problems, the suitable number of clusters cannot be predicted. To overcome the above drawback the 

current research focused on developing the clustering algorithms without giving the initial number of clusters. 

Index Terms— Bioinformatics, Clustering, K-Means, Microarray gene expression data.  

——————————      —————————— 

1 INTRODUCTION                                                                     

LUSTERING has been used in a number of applications 
such as engineering, biology, medicine and data mining.  

Cluster analysis of gene expression data has proved to be a 
useful tool for identifying co-expressed genes. DNA microar-
rays are emerged as the leading technology to measure gene 
expression levels primarily, because of their high throughput. 
Results from these experiments are usually presented in the 
form of a data matrix in which rows represent genes and col-
umns represent conditions [12]. Each entry in the matrix is a 
measure of the expression level of a particular gene under a 
specific condition. Analysis of these data sets reveals genes of 
unknown functions and the discovery of functional relation-
ships between genes [18]. The most popular clustering algo-
rithms in microarray gene expression analysis are Hierarchical 
clustering [11], K-Means clustering [3], and SOM [8]. Of these 
K-Means clustering is very simple and fast efficient. The K-
Means clustering algorithm which is developed by Mac Queen 
[6]. The K-Means algorithm is effective in producing clusters 
for many practical applications. One drawback in the K-Means 
algorithm is that of a priori fixation of number of clusters [2, 3, 
4, 17]. 

Iterative Self-Organizing Data Analysis Techniques (ISO-
DATA) tries to find the best cluster centres through iterative 
approach, until some convergence criteria are met. One signif-
icant feature of ISODATA over K-Means is that the initial 
number of clusters may be merged or split, and so the final 
number of clusters may be different from the number of clus-

ters specified as part of the input. In [10] Karteeka Pavan  et al 
proposed an algorithm AGMFI to initialize merge factor for 
ISODATA. This paper studies an initialization of centroids 
proposed in [17] for microarray data to get the best quality of 
clusters.   

This paper is organised as follows. Section 2 presents an 
overview of Existing works K-Means algorithm, Iterative Self 
– Organizing Data Analysis Techniques and Automatic Gen-
eration of Merge Factor for ISODATA (AGMFI) methods. Sec-
tion 3 describes the centre initialization algorithm. Section 4 
describes performance study of the above methods for UCI 
data sets.  Section 5 describes the conclusion and future work. 

 

2 RELATED WORK 

2.1 K- Means Clustering 

The main objective in cluster analysis is to group objects that 
are similar in one cluster and separate objects that are dissimi-
lar by assigning them to different clusters. One of the most 
popular clustering methods is K-Means clustering algorithm 
[3, 9, 12, 17]. It is classifies objects to a pre-defined number of 
clusters, which is given by the user (assume K clusters). The 
idea is to choose random cluster centres, one for each cluster. 
These centres are preferred to be as far as possible from each 
other. In this algorithm mostly Euclidean distance is used to 
find distance between data points and centroids [6]. The Eu-
clidean distance between two multi-dimensional data points X 
= (x1, x2, x3, ..., xm) and Y = (y1, y2, y3, ..., ym) is described as fol-
lows:     

D(X, Y) =√(𝑥 − 𝑦 )  + (𝑥 − 𝑦 )  + ⋯+ (𝑥 − 𝑦 )   
 
The K-Means method aims to minimize the sum of squared 
distances between all points and the cluster centre. This pro-
cedure consists of the following steps, as described below  
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Algorithm 1:  K-Means clustering algorithm [13] 

 

 
Require:  D = {d1, d2, d3, ..., dn } // Set of n data points. 

                 K - Number of desired clusters 

Ensure:   A set of K clusters. 

Steps: 
1.   Arbitrarily choose k data points from D as initial centroids; 

2.   Repeat 

        Assign each point di to the cluster which has the closest cen-

troid; 

        Calculate the new mean for each cluster; 

      Until convergence criteria is met. 

 

 

     Though the K-Means algorithm is simple, it has some 
drawbacks of quality of the final clustering, since it highly 
depends on the arbitrary selection of the initial centroids [1]. 
 
2.2 Iterative Self-Organizing Data Analysis Techniques 

ISODATA algorithms variation is to permit splitting and 
merging of the resulting clusters. Typically, a cluster is split 
when its variance is above a pre-specified threshold, and two 
clusters are merged when the distance between their centroids 
is below another pre-specified threshold [14]. Using this vari-
ant, it is possible to obtain the optimal partition starting from 
any arbitrary initial partition, provided proper threshold val-
ues are specified. The well-known ISODATA algorithm uses 
more clustering technique of merging and splitting clusters. If 
ISODATA is given  the “ellipse” partitioning shown in Fig.1 as 
an initial partitioning, it will  produce the optimal three-
cluster partitioning ISODATA will first merge the  clusters {A} 
and {B,C} into one cluster because the distance between their 
centroids  is small and then split the cluster  {D,E,F,G}, which 
has a large variance, into two clusters {D,E} and {F,G}. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Algorithm 2:  ISODATA algorithm [15] 

 

Input:   D = {d1, d2, d3, ..., dn } // Set of n data points. 

              K - Number of desired clusters.  

              Θn - a threshold value point for discarding cluster.  

              Θs - a threshold value for spilt operation. 

              Θc - a threshold value for merge operations. 

Output: A set of K clusters. 

Steps: 
1.     Select a K- initial partition of the patterns with a fixed      

        number of clusters and cluster centers; 

2.     Assign each pattern to its closest cluster center and   

        compute the new cluster centers as the centroids of the   

        clusters. Repeat this step until convergence is achieved,   

        i.e., until the cluster membership is stable; 

3.     Merge and split clusters based on some heuristic   

        information, optionally repeating step 2. 

2.3 Automatic Generation of Merge Factor for ISODATA     
(AGMFI) Algorithm 

The clusters produced in the K-Means clustering are further 
optimized by ISODATA algorithm.  Some of the parameters 
are fixed by user during the merging and partitioning the clus-
ters. In [10], Automatic Generation of Merge Factor is pro-
posed to initialize merge factor for ISODATA. AGMFI uses 
different heuristics to determine when to split. Decision of 
merging is done based upon merge factor which is the func-
tion of distances between the clusters. The step by step proce-
dure of AGMFI is given here under. 
 

 

Algorithm 3: The AGMFI algorithm [10] 

Input:  D = {d1, d2, d3, ..., dn } // Set of n data points. 

             K - Number of desired clusters.  

             m- minimum number of samples in a cluster. 

             n – maximum number of iterations. 

             Θs – a threshold value for spilt_size. 

             Θc - a threshold value for merge_size. 

Output: A set of K clusters. 

Steps: 

1.     Identify clusters using K-Means algorithms; 
2.     Find the inter distance in all other cluster to minimum   

        average inter distances clusters point in C; 

3.    Discard the m and merging operations of cluster ≥ 2*K,   

        If n is even go to step 4 or 5; 

4.     Distance between two centroids < C, merge the cluster  

        And update centroid, otherwise repeat up to K/2 times; 

5.     K ≤ K/2 or n is odd go to step 6 or 7; 

6.   Find the standard division of all clusters that has exceeds S * 

standard division of D; 

7.     Executed n times or no changes occurred in clusters since the 

last time then stop, otherwise take the centroids of the  clusters as 

new seed points and find the clusters using K- Means and go to 
step 3. 

 

  

Fig. 2. ISODATA Cluster partition. 
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The main difference between AGMFI and ISODATA is 

ISODATA uses heuristic values to merge the clusters, AGMFI 
generates automatically and the choice of c is not fixed but is 
to be decided to have better performance.  The distance meas-
ure used here is the Euclidean distance. To assess the quality 
of the clusters, we used the silhouette measure proposed by 
Rousseeuw [14].  

3 CLUSTER CENTRE INITIALIZATION ALGORITHM 

(CCIA) 

Performance of iterative clustering algorithms which converg-
es to numerous local minima depends highly on initial cluster 
centers. Generally initial cluster centers are selected randomly. 
In this section, the cluster centre initialization algorithm is 
studied to improve the performance of the K-Means algo-
rithm.  
 

 

Algorithm 4: Finding the initial centroids [17] 

 

 
Input:    D = {d1, d2, ..., dn} // set of n data items 

               K // Number of desired clusters 

Output: A set of K initial centroids. 

 

Steps: 

1.     Set m = 1; 

2.     Compute the distance between each data point and all   

        other data points in the set D; 

3.     Find the closest pair of data points from the set D and  

        form a data point set Am (1 ≤ m ≤ K) which contains   

        these two data points, Delete these two data points from   

        the set D; 
4.     Find the data point in D that is closest to the data point    

        set Am, Add it to Am and delete it from D; 

5.     Repeat step 4 until the number of data points in Am  

         reaches 0.75 * (n/K); 

6.     If m < K, then m = m+1, find another pair of data points   

        from D between which the distance is the shortest, form   

         another data-point set Am and delete them from D, Go to   

         step 4; 

7.     For each data point set Am (1 ≤  m ≤ K) find the  

        arithmetic mean of the vectors of data points in Am, these   

        means will be the initial centroids. 

 

4 EXPERIMENTAL ANALYSIS AND DISCUSSION  

The following data sets are used to analyse the methods stud-
ied in sections 2 and 3. 

4.1 Serum Data 

This data set is described and used in [10]. It can be down-
loaded from:  http://www.sciencemag.org/feature/data/ 
984559.shl and corresponds to the selection of 517 genes 
whose expression varies in response to serum concentration 
inhuman fibroblasts. 

 
4.2 Yeast data 

This data set is downloaded from Gene Expression Omnibus-
databases.  The Yeast cell cycle dataset contains 2884 genes 
and 17 conditions. To avoid distortion or biases arising from 
the presence of missing values in the data matrix we removal 
all the genes that had any missing value. This step results in a 
matrix of size 2882 * 17. The proposed matrix contains integer 
in the range of 1 to 500. 
 
4.3 Simulated Data  

It is downloaded from http://www.igbmc.u-
strasbg.fr/projets/fcm/y3c.txt. The set contains 300 Genes [3]. 
 Above the microarray data set values are all normalized in 
every gene average values zero and standard deviation equal 
to 1. 
 
4.4 Comparative Analysis  

The K-Means, CCIA with K-Means and AGMFI are applied on 
serum data set when numbers of clusters are taken as 10   and 
7 times running to EIAGMFI clusters data into 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
K-Means, CCIA with K-Means and AGMFI are applied on 
Yeast data set when number of clusters initialized to 10 and 7 
times running on EIAGMFI clusters data into 6 . 

 
 

 

 

 

 

 

 

 

 

Fig. 2. Performance Comparison chart for serum data 
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Fig. 3. Performance Comparison chart for Yeast data 
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The K-Means, CCIA with K-Means and AGMFI are applied on 
simulated data set when no of clusters initialized to 10 and 7 
times running to EIAGMFI clusters data into 5. 

 

 

 

 

 

 

 

 

 

 

TABLE 1 
COMPARATIVE ANALYSIS OF CLUSTERING QUALITY  

Data 

set 

Initial 

num-

ber of 

clus-

ter 

Final-

ized 

num-

ber of 

clus-

ter 

Cluster 

Quality 

by K-

Means 

Cluster 

Quality 

by 

CCIA 

with K- 

Mean 

Cluster 

Quality 

by 

AGMFI 

Cluster 

Quality 

by 

EIAGM

FI 

Serum 10 6 -0.013 -17.162 18.476 21.101 

simu-

lated 

10 5 38.407 25.962 54.347 57.552 

Yeast 10 6 -6.072 10.425 43.559 50.397 

 

5 CONCLUSION 

In this paper AGMFI was studied to improve the quality of 
clusters. The Evaluation of Improved Automatic Generation of 
Merge Factor for Clustering Microarray Data based on K-
Means and AGMFI clustering algorithms were also studied. 
One of the demerits of AGMFI is random selection of initial 
seed point of desired clusters. This was overcome with CCIA 
for finding the initial centroids algorithms to avoidance for 
initial values at random. Therefore, the EIAGMFI algorithm 
not depending upon the any choice of the number of cluster 
and automatic evaluation initial seed of centroids it produces 
different better results. Both the algorithms were tested with 
gene expression data. 
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Fig. 4. Performance Comparison chart for simulated data 
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